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THEORETICAL ANALYSIS OF MICROWAVE AND MILLIMETER WAVE INTEGRATED

CIRCUITS BASED ON MAGNETIC FILMS

Under the sponsorship of the ONR Contract Contract N00014-89-J-1019 we have

published 29 refereed journal and conference papers.

A macroscopic model is proposed to explain nonlinear electromagnetic phenomena in

superconductors. Nonlinear constitutive relations for electromagnetic problems are derived

by modifying the linear London's equations. The superelectron number density na is a

function of the applied current density. The critical current density Jc is derived classically

from a critical energy Ec. For temperature T 9 0, the concept of critical current Jc

does not imply an abrupt transition of the whole sample from a superconducting state

to a normal state when J > Jc. A rather smooth variation of ni(J) is shown instead.

The relation, ns(J), is derived from the Maxwellian distribution of electron velocities

at a certain temperature T and a certain macroscopic current density J. Agreement

has also been found between this ns(JT) model and the temperature dependance of

ni in the two-fluid model. The nonlinear conductivities ffS(J) and an(J) are obtained

from the London's equation and the ns(J) function. Nonlinear resistance R(I), kinetic

inductance LkWI) and surface impedance Z,(I) in thin wire, slab, and strip geometries

of superconductors are calculated. A general scheme of solving nonlinear electromagnetic

problems in siperconductors is proposed. A good agreement between the theory and

experiments has been found.

The Riccati differential equation for reflection coefficients in one-dimensional in-

homogeneous media is applied to the electromagnetic inverse scattering problem. Two

types of Riccati equation in literature, Schelkunoff's and Redheffer's, are derived and dis-

tinguished. Based on inverting Redheffer's Riccati equations, both linear and non-linear

inversion formulae are proposed. These renormalized perturbation formulae reconstruct

the dielectric profile from the reflection coefficient at the surface of the medium. Exist-

ing inversion formulae (including the Born approximation) which were obtained from the

Green's function ap:roach and the Gel'fand-Levitan-Marchenko (GLM) theory are now
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derived from the Riccati equation. Four inversion schemes based on inverting the Riccati

equation, linearized i',4dheffer's Riccati equation, linearized Schelkunoff's Riccati equation,

non-linear Redheffer's Riccati equation and non-linear Schelkunoff's Riccati equation ap-

proaches, are used to invert several dieletric profiles. Comparison and summary of these

methods are given. All these methods give higher order inversion results than the first-order

Born approximation. The inversion is performed on band-limited reflection coefficients in

frequency domain. An inverse Liouville transform is introduced to rigorously recover the

geometric lengths from the stretched coordinates in the inversion procedure.

In general, the inverse methods can be summarized in three categories. The first

one is a data base approach. Whenever a measurement result comes in, it will be compared

with all the pre-stored patterns in a library to identify the possible targets. In industry, it is

called data interpretation which strongly relies on previous experience. The accumulation

of data in the library is a learning process. The advantage of this method is that the

unknowns can be identified exactly if such target has been seen before so that the cause

and the result are directly connected. The disadvantage is that if the data base is not big

enough, the target can not be identified, or if the data base is too big, it will take too

much time to search for and match the right pattern. The second method is the iterative

approach. A forward model of deducing results from cause has been established before the

inversion. When a measurement is obtained, a set of guessed values for the unknowns will

be put in the forward model as the possible causes. If the predicted result of the forward

model does not match the measurement, an adjusted set of parameters will be used as

a new guess. The whole procedure will be repeated until the match is found. During

iterations, how to correct the error to reach fastest the convergent value is very important.

This procedure is also called optimization or error minimization, which by itself is an active

research area. Iterative methods are particularly useful when the solution of an integral

equation can not be found in an explicit form. As an example of the iterative methods, the

Born approximation approximates the forward model in a linearized form, then iterates

towards convergence. The advantage of the iterative approach is that an accurate final

solution can be found at a relative fast (compare to data base search) speed. The method

is also flexible for different kinds of targets, unlike the data base search where the target

has to have been seen before. The disadvantage is that the convergence of iteration is

not always guaranteed. There are usually more than one minimum of the cost function.
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The initial guess is sometimes so critical to assure the right convergent result that a Priori

information needs to be used. Non-uniqueness is a serious problem in all inversion methods.

Sufficient number of measurements are helpful of reducing the degree of non-uniqueness.

Formulation of the forward model for the final inversion equation determines how efficient

the inversion scheme is, which sometimes also affect the degree of non-uniqueness.

A recently developed inversion method referred to as the renormalized Source-Type

Integral Equation (STIE) approach solves the integral equation derived from the Green's

function without the linear approximation. The STIE approach formulates an exact for-

ward model, hence is not restricted to low contrast profiles or weak scattering. The STIE

method has been applied to profile inversion problems of the soil moisture and oil for-

mation in boreholes, where the medium properties are described by the permittivity and

conductivity distributions. The unknown profiles are inverted from the electromagnetic

measurements at remote observation points. The third category of inverse methods is the

explicit solution approach. When one solves the inversion equation, closed-form solutions

may be obtained if the problem is formulated in certain ways and the data is in certain

forms. Examples of this method include the Gel'fand-Levitan-Marchenko (GLM) theory

when rational reflection coefficient is used and methods of inverting the Riccati equation.

The advantage is obviously that the convergence is guaranteed and the speed is excellent.

Unfortunately, only a very few practical problems can be solved by using this method. It

is usually used as a check for other inversion methods or for mathematical studies. The

STIE approach is extended to the case of a general background medium. The formulation

of the inversion equation is exact. Numerical optimization methods are employed in the

solution of the inversion equation. The inversion equation also has an explicit dependence

on the unknowns to be inverted for; this allows one to compute the derivative (including

higher orders) of the response with respect to these unknowns in a closed form. Therefore,

higher-order convergence can be achieved without increasing much of the computational

time. By pre-storing the elements of the inversion equation (which depend only on the

background medium and are independent of the unknown profile), the method does not

require the solution to the full forward problem repeatedly as in the case of the Distorted

Born approach and is therefore faster in implementation. An algorithm is formulated

for simultaneously inverting the unknown permittivity and conductivity profiles. As an

example, a soil moisture profile is inverted from measurements above the ground.

4



A full modal analysis is used to study the dispersion characteristics of microstrip

lines periodically loaded with crossing strips in a stratified uniaxially anisotropic medium.

Dyadic Green's functions in the spectral domain for the multilayered medium in conjunc-

tion with the vector Fourier transform (VFT) are used to formulate a coupled set of vector

integral equations for the current distribution on the signal line and the crossing strips.

Galerkin's procedure is applied to derive the eigenvalue equation for the propagation con-

stant. The effect of anisotropy for both open and shielded stuctures on the stopband

properties is investigated.

The input impedance of a microstrip antenna consisting of two circular microstrip

disks in a stacked configuration driven by a coaxial probe is investigated. A rigorous anal-

ysis is performed using a dyadic Green's function formulation where the mixed boundary

value problem is reduced to a set of coupled vector integral equations using the vector

Hankel transform. Galerkin's method is employed in the spectral domain where two sets

of disk current expansions are used. One set is based on the complete set of orthogonal

modes of the magnetic cavity, and the other employs Chebyshev polynomials with the

proper edge condition for the disk currents. An additional term is added to the disk cur-

rent expansion to properly model the current in the vicinity of the probe/disk junction.

The input impedance of the stacked microstrip antenna including the probe self-impedance

is calculated as a function of the layered parameters and the ratio of the two disk radii.

Disk current distributions and radiation patterns are also presented. The calculate results

are compared with experimental data and shown to be in good agreement.

The coupled-wave theory is generalized to analyze the diffraction of waves by chiral

gratings for arbitrary angles of incidence and polarizations. Numerical results for the

Stokes parameters of diffracted Floquet modes versus the thickness of chiral gratings with

various chiralities are calculated. Both horizontal and vertical incidences are considered for

illustration. The diffracted waves from chiral gratings are in general elliptically polarized;

and in some particular instances, it is possible for chiral gratings to convert a linearly

polarized incident field into two nearly circularly polarized Floquet modes propagating in

different directions.
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A general spectral domain formulation to the problem of radiation of arbitrary

distribution of sources embedded in a horizontally stratified arbitrary magnetized linear

plasma is presented. The fields are obtained in terms of electric and magnetic type dyadic

Green's functions. The formulation is considerably simplified by using the kDB system

of coordinates in conjunction with the Fourier transform. The distributional singular

behavior of the various dyadic Green's functions in the source region is investigated and

taken into account by extracting the delta function singularities. Finally, the fields in any

arbitrary layer are obtained in terms of appropriately defined global upward and downward

reflection and transmission matrices.

We have investigated a method for the calculation of the current distribution, re-

sistance, and inductance matrices for a system of coupled superconducting transmission

lines having finite rectangular cross section. These calculation allow accurate characteri-

zation of both high-Tc and low-Tc superconducting strip transmission lines. For a single

stripline geometry with finite ground planes, the current distribution, resistance, induc-

tance, and kinetic inductance are calculated as a function of the penetration depth for

various film thickness. These calculations are then used to determine the penetration

depth for Nb, NbN, and YBa2 Cu 3 O7 _z superconducting thin films from the measured

temperature dependence of the resonant frequency of a stripline resonator. The calcula-

tions are also used to convert measured temperature dependence of the quality factor to

the intrinsic surface resistance as a function of temperature for a Nb stripline resonator.

Proximity-print x-ray lithography is commonly performed with gold or tungsten

structures of sizes down to 30 nm wide and 50-800 nm tall which are patterned onto the

surface of a thin, x-ray transparent membrane. X-rays in the wavelength range of 0.5-5 nm

are used for replication with mask-substrate gaps ranging from zero (contact print) up to

20 rtm or more. The resolution o f this method (minimum achievable linewidth) is limited

predominantly by the diffraction of the x-rays around these structures and the spreading

of the diffracted waves into the 0-20 prm gap. Work to date has assumed that scalar

diffraction theory is applicable-as calculated, for example, by the Rayleigh-Sommerfeld

formulation-and that Kirchhoff boundary conditions can be applied. Kirchhoff boundary

conditions assume that the fields are constant in the region between the absorbers, and

also (a different) constant in the region just under the absorbers, and that there are no

fringing fields. In this report we explore the validity of this assumption for the case
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of 30 nm-wide by 30-100 nm-tall gold absorbers with 4.5 nm (CK) x-rays. Because of

computational time limitations, the shorter wavelength and larger absorber cases are not

currently possible.) Because the absorber is only 7 wavelengths wide and 7-20 wavelengths

high, strong diffractive effects are expected. The finite-difference time-domain (FD-TD)

technique was used on a Cray-2 supercomputer to predict the fields diffracted by the gold

absorbers. In applying the FD-TD technique, Maxwell's equations are discretized in space

and time on a uniform rectangular grid. A second-order absorbing boundary condition is

applied at the outer boundary of the computational domain in order to simulate unbounded

space. The results indicate that strong fringing fields exist in the shadow region of the

absorber, and hence Kirchhoff boundary conditions are not accurate in this regime.

Because the effects of diffraction during proximity-print x-ray lithography are of

critical importance, a number of previous researchers have attempted to calculate the

diffraction patterns and minimum achievable feature sizes as a function of wavelength and

gap. Work to date has assumed that scalar diffraction theory is applicable-as calculated, for

example, by the Rayleigh-Sommerfeld formulation-and that Kirchhoff boundary conditions

can be applied. Kirchhoff boundary conditions assume that the fields (amplitude and

phase) are constant in the open regions between absorbers, and a different constant in

regions just under the absorbers (i.e., that there are no fringing fields). An x-ray absorber

is, however, best described as a lossy dielectric that is tens or hundreds of wavelengths

tall, and hence Kirchhoff boundary conditions are unsuitable. In this report we use two

numerical techniques to calculate (on a Cray 2 supercomputer) accurate diffracted fields

from gold absorbers for two cases: a 30 nm-wide line at X = 4.5 nm, and a 100 nm-wide

line at X = 1.3 nm. We show that the use of Kirchhoff boundary conditions introduces

unphysically high spatial frequencies into the diffracted fields. The suppression of these

frequencies-which occurs naturally without the need to introduce an extended source or

broad spectrum-improves exposure latitude for mask features near 0.1 im and below.
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In order to understand the physical meaning of rational reflection coefficients in

one-dimensional inverse scattering theory for optical waveguide design, we have studied

the relation between the poles of the transverse reflection coefficient and the modes in

inhomogeneous dielectrics. By using a stratified medium model it is shown that these

poles of the reflection coefficient have a one-to-one correspondence to the discrete modes,

which are the guided and leaky modes. The radiation modes have continuous real values of

transverse wave numbers and are not represented by the poles of the reflection coefficient.

Based on these results, applications of the Gel'fand-Levitan-Marchenko theory to optical

waveguide synthesis with the rational function representation of the transverse reflection

coefficient are discussed.

We developed an inversion-algorithm based on a recently developed inversion method

referred to as the Renormalized Source-Type Integral Equation approach. The objective

of this method is to overcome some of the limitations and difficulties of the iterative Born

technique. It recasts the inversion, which is nonlinear in nature, in terms of the solution

of a set of linear equations; however, the final inversion equation is still nonlinear. The

derived inversion equation is an exact equation which sums up the iterative Neuman (or

Born) series in a closed form and; thus, is a valid representation even in the case when

the Born series diverges; hence, the name Renormalized Source-Type Integral Equation

Approach.

The scattering and receiving characteristics of a probe-fed stacked circular mi-

crostrip antenna, both as an isolated element and in an infinite array, are investigated.

The receiving case, where the antenna is loaded with impedance ZL, is solved by

superposition, decomposing the problem into the scattering case with ZL = 0 and the

transmitting case. In the scattering case, the coaxial probe is short-circuited to the ground

plane and the induced probe current I1 due to an incident plane wave excitation is de-

termined. In the transmitting case, a voltage V is applied to the base of the probe and

the input impedance Zin is solved for, giving a relationship between the applied voltage

V and the transmitting probe current 12. With the knowledge of I1 and Zin, for a given

load impedance ZL, the total probe current, I = I1 + 12, and the received power are

determined.
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The scattering and transmitting problems are solved rigorously using a dyadic

Green's function formulation where the mixed boundary value problem is reduced to a set

of coupled vector integral equations for the unknown disk and probe currents. Galerkin's

method is employed in the spectral domain where the disk current distributions are ex-

panded in terms of the complete set of transverse magnetic (TM) and transverse electric

(TE) modes of a cylindrical resonant cavity with magnetic side walls. An additional term

is added to the disk current expansion to properly model the singular behavior of the

current in the vicinity of the probe, to ensure continuity of the current at the probe/disk

junction, and to speed up the convergence of the solution.

The radar cross section (RCS) of a single stacked microstrip antenna is calculated

for both the open and short-circuited cases. For an infinite array of phased elements, the

reflection coefficient seen at the input of the antenna and the received power are calculated.

The complex resonant frequencies of the open structure of a microstrip antenna

consisting of two circular microstrip disks in a three layer stacked configuration have been

rigorously calculated as a function of the layered parameters and the ratio of the radii

of the two disks. Using a dyadic Green's function formulation for horizontally stratified

media and the vector Hankel transform, the mixed boundary value problem is reduced to

a set of coupled vector integral equations. Employing Galerkin's method in the spectral

domain, the complex resonant frequencies are calculated and convergence of the results is

demonstrated. It is shown that for each mode, the stacked circular microstrip structure has

dual resonant frequencies which are associated with the two coupled constitutive resonators

of the structure and which are a function of the mutual coupling between them. This mutal

coupling depends on the geometrical configuration of the stacked structure, the layered

parameters, and the disk radii. The maximum coupling effect occurs where the real parts

of the resonant frequencies of the constitutive resonators are approximately equal, where

the behavior of the resonances in this region is a function of the coupling. The dual

frequency behavior of the stacked microstrip structure, easily controlled by varying the

parameters of layer 2 and disk radii ratio, given fixed parameters for layer 1 and layer 3,

may be used to broaden the bandwidth or provide for dual frequency use of the antenna.
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We rigorously analyze the radiation problem of a circular patch which is center fed

by a coaxial-line driven probe over a ground plane and situated in an arbitrary layered

medium. The current distribution on both the patch and the probe is rigorously formu-

lated using a planar stratified medium approach. A set of three coupled integral equation

is derived which governs the axial current distribution on the probe, the radial current

distribution on the patch and the azimuthal magnetic current sheet across the aperture of

the driving coaxial line. This set of equations is then solved using the method of moments.

The resulting matrix equation is obtained in terms of Sommerfeld-type integrals that take

into account the effect of the layered medium. These integrals are efficiently computed by

a simple deformation in the complex wavenumber domain. The probe current distribu-

tion, input impedance and radiation pattern are presented and compared to the case of a

uniform probe current distribution.

Microstrip antennas of stacked configurations have received attention in recent years

for both wideband and dual f-equency use, overcoming the narrow bandwidth of conven-

tional single layer microstrip antennas. Although much experimental work has been per-

formed, theoretical analyses of stacked microstrip patches is limited. Resonant frequencies

of the stacked microstrip antennas have been rigorously calculated. Numerical methods

have been used to calculate the current and radiation fields of a stacked microstrip antenna.

The method of moments has been applied to analyze to the stacked microstrip structure

when excited by an incident plane wave. A spectral domain iterative analysis for a stacked

microstrip antenna where the antenna is described by a rectangular sampling grid has been

used to calculate radiation patterns. This analysis does not allow for accurate modeling

of the probe feed.

In our approach, the input impedance and radiation fields of a coaxial probe-fed

microstrip antenna consisting of two circular microstrip disks in a stacked configuration

are investigated. Using a dyadic Green's formulation, a rigorous analysis of the microstrip

antenna is performed for two stacked configurations. Assuming uniform current along the

probe, the mixed boundary value problem is reduced to a set of coupled vector integral

equations using the vector Hankel transform and solved using Galerkin's method in the

spectral domain. Due to the singular nature of the current on the driven disk in the vicinity

of the probe, an additional term is included in the current expansion to account for the
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divergent nature of the current near the probe feed junction and insure continuity of the

current at the junction.

The input impedance and radiation patterns of the stacked microstrip antenna is

calculated as a function of the layered substrate, permittivities and thicknesses, and the

ratio of the radii of the two disks. Both dual frequency and wideband operation is discussed.

Microstrip discontinuities, such as open end, gap and step in width, have been

widely studied by many authors. There are different methods for analyzing microstrip dis-

continuities, such as quasi-static approach, planar waveguide model and integral equation

formulation. As the frequrncy gets higher, the quasi-static assumption is not valid. In the

planar waveguide model analyses, the thickness of the substrate is assumed much smaller

than the wavelength so that a two-dimensional model may be applied. In this case, the

effect of the radiation and the surface waves are not considered. The integral equation

method has been applied to study the open end and gap dicontinuities on isotropic sub-

strates. In applying the integral equation method, various approximation were introduced

in the computation procedure. More recently, finite element expansion currents are used

to formulate a full-wave analysis of micristrip discontinuities on isotropic substrates.

The open end, gap and step in width discontinuities placed on anisotropic substrates

are rigorously analyzed. Both uniaxial and tilted uniaxial anisotropy are considered. The

materials are assumed to be lossless and the metal strips to be infinitely thin. A dyadic

Green's function for layered anisotropic media is used to formulate a set of vector integral

equations for the current distribution. The fundamental hybrid mode is assumed to be

propagating on the input and output of microstrip lines. In solving the set of vector integral

equations, the method of moment is employed. The basis functions for the current on the

metal strip consider the edge effect. Both logitudinal and transverse currents are considered

in the calculation. The propagation constant for the infinitely long uniform microstrip line

is first calculated. Then the propagation constant of the fundamental mode is used to

formulate the excitation of the discontinuity problem. At the discontinuity, local basis

functions are used to simulate the local currents near the discontinuity. The scattering

matrix can then be obtained, and an equivalent circuit model can be proposed. The effect

of the anisotropy is investigated and the results are discussed.
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The leakage phenomenon is important in the area of millimeter-wave integrated

circuits and integrated optics. Theoretical analyses and experiments have been performed

to investigate this phenomenon. The leakage is due to the TE-TM coupling occurring at

the geometrical discontinuities, and the leaky power in the form of surface wave propagates

in the background medium.

There are different methods to analyze the dielectric strip waveguides, including

the approximate field matching method, effective dielectric constant (EDC) method, mode

matching method, etc. The first two methods are approximate, and can not be used to

predict the imaginary part of the propagation constant. In the third one, ground planes

have to be put at some distance away from the guiding structure, hence the effect of

radiation loss is neglected.

An integral equation formulation using dyadic Green's function is derived to solve

for the dispersion relation of single and coupled dielectric strip waveguides. A method to

predict the leakage is presented, and the leakage properties are investigated.

Three different dielectric strip waveguides are investigated : optical rib waveguide,

strip dielectric guide, and insulated image guide. Both single and coupled strip waveguides

are studied. The cross section of the dielectric strips are assumed to have rectangular shape.

Applying the Galerkin's method, the field distribution on the cross section are represented

by a set of unit pulse basis functions. Substituting these basis functions into the integral

equations, and choosing the same set of basis functions as the testing functions, we can

obtain a determinant equation from which the propagation constant can be solved.

For single dielectric strip waveguide, it is observed that the leakage occurs when the

effective refractive index is smaller than that of a surface wave mode in the background

medium. It is also observed that if the lowest TE-like (TM-like) mode is leaky, the lowest

TM-like (TE-like) mode is non-leaky. When the lowest order mode leaks, the surface wave

mode of opposite polarization is excited. When the higher order mode leaks, the surface

wave modes of both polarizations can be excited.
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For two symmetrical dielectric strip waveguides, both the even and odd modes

are investigated. For the leaky mode, the total leakage is due to the leakage from each

individual strip waveguide. At the separation where the even mode has a maximum leakage,

it implies that the surface wave modes excited by each waveguide add in phase. For the

odd mode at about the same separation, these coaxial line feed, the reflection coefficient

for the TEM mode is obtained which allows one to compute the input impedance at the

terminals of the probe. Numerical results for the input impedance are presented.

A finite difference time domain technique for two dimensional time domain scat-

tering of electromagnetic waves is derived. The triangular grids and the control region

approximation are employed to discretize Maxwell's equations. The finite difference time

domain techniques with uniform rectangular grids has been used in the past. The scatter-

ers are modeled using staircases and, recently, the accuracy of this approximation has been

investigated. Several types of other grids have been proposed to improve the staircase ap-

proximation. Generalized nonorthogonal grid can model scatterer without staircasing. It

has been applied to spherical systems, yet they appear to be cumbersome for general scat-

terers. The "distorted rectangular grid" model approximates the computational domain

using rectangular grids and distorts the boundary grids to fit the interfaces. The triangular

grid is used in this paper, which is very flexible in dealing with arbitrary scatterers and

absorbing boundaries.

The control region approximation, which calls for Delaunay and Dirichlet tessella-

tion, has been successfully applied to the frequency domain problems in the past. Two

double integral terms are obtained by integrating the Helmholtz equation about the De-

launay tessellation. The term involving the Laplace operator can be converted to a closed

loop integral of normal derivatives, which can easily be approximated in finite difference

manner by utilizing the orthogonal property of Delaunay and Dirichlet tessellation. The

remaining term can be approximated by multiplying the field at the node with the area. In

the time domain problem, the same approximation is applied to the wave equation, except

the term involving time derivatives is used in time marching scheme. Alternatively, as in

Yee's algorithm, the first order Maxwell's equations are solved by spatially and temporally

separating the electric and magnetic fields. In the case of electric polarization, the electric

fields are placed at the nodes and the magnetic fields are placed at the center of triangular

edges. The curl H equation is integrated by applying Stoke's theorem and convert it to a
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dosed loop integral of tangential magnetic fields. This equation can be used to advance

electric fields in time. To update magnetic fields, the second curl equation is used. This

equation is approximated in the finite difference manner by utilizing the orthogonality

property of the tessellation. The equations for the magnetic polarization case can also be

derived following the similar procedure.

In order to limit the computation domain, the scatterers are enclosed with artificial

outer boundaries. Continuous smooth outer boundaries, such as circles and ellipses, are

chosen. The second-order time domain absorbing boundary conditions derived from the

pseudo-differential operator approach is imposed at the outer boundaries. These boundary

conditions are implemented with the control region approximation to determine necessary

field quantities at the boundary. The results of the time domain contcol region approach

are presented for simple scatterer geometries, such as conducting and coated cylinders and

strips, by calculating both the transient and time-harmonic responses.

The Finite-Difference Time-Domain (FD-TD) method was first introduced by Yee

who discretized Maxwell's time dependent curl equations with second-order accurate

central-difference approximations in both the space and time derivatives. Since then, it

has been applied extensively to scattering and wave absorption problems. Application of

the FD-TD method to microstrip problems, in which frequency-domain approaches have

dominated, has so far attracted little attention until recently it was used to obtain fre-

quency characteristics of microstrip cavities. Also, it has been extended to the analyses

of open microstrip line and microstrip discontinuity problems where absorbing boundary

conditions are needed for the simulation of the unbounded domain. However, only isotropic

or simple anisotropic media are considered in the above papers.

A new FD-TD grid model is used to solve microstrip problems in anisotropic media
having tilted optical axes expressed by permittivity or permeability tensor with off-diagonal

elements. This grid model is indeed a superposition of two conventional grids with some

displacement which depends on the optical axes of anisotropy. Implementations of different

boundary conditions are discussed. Using this model, the frequency-dependent character-

istics of microstrip lines are investigated. The microstrips are assumed to be placed on

top of anisotropic substrates with tilted optical axes. The case with superstrates is also

investigated.
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In the finite difference computation, the open-end termination is simulated by using

the open-circuit, short-circuit technique. The source plane is implemented by using a

magnetic wall with a Gaussian pulse excited on the surface under the strip. Because of the

symmetry of the problem, the region under consideration can be reduced by half, using a

magnetic-wall at the center plane.

The fields at different positions are first calulated. Then the Fourier Transform is

taken to give the field spectra from which the voltage and current can also be obtained.

Using these data, the effective permittivity and the characteristic impedance can be de-

termined. The frequency characteristics of microstrip lines in anisotropic media obtained

by this method are compared with the published results.

Finite difference time domain (FDTD) techniques show great promise in their ability

to solve three dimensional problems with arbitrary geometry. Advantages of this method

include the ability to model spatially or temporally varying media. These advantages

are due to the complete discretization of both space and time. Considering the volume

of information being calculated these techniques are very efficient and are well suited to

calculation on future parallel processing computers. This method was first formulated

by Yee in 1966 and his basic algorithm is still in use. Recent work has demonstrated the

applicability of the FDTD technique to microstrip problems. The centered finite difference

approximations used are second order accurate in both space and time yielding good results

for reasonable mesh sizes. Numerical techniques used to solve electromagnetic problems

must limit the domain over which the fields are to be calculated. This mandates the use of

an absorbing boundary condition to simulate the outward propagation of waves incident

on the walls of the mesh. An absorbing boundary condition has been developed by Mur

based on the work of Enquist and Majda.
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Our work in this area includes development of the algorithms mentioned above into

a general purpose computer code which may be used to solve for the transient response

of electromagnetic problems with an arbitrary geometry. In addition to the transient

response, frequency domain parameters may be obtained by fourier transform of the time

domain results. Since the fields are calculated throughout space and time all other desired

parameters may be calculated from the field quantities. Specifically, we are analyzing

rectangular microstrip structures with as many as two or more ports. Such structures may

be used in MMIC filters or antennas. This problem is of interest for several reasons. First,

there are existing frequency domain solutions to the resonance problem of a rectangular

microstrip patch, which we may compare with the FDTD solution. Secondly, the FDTD

technique may be used to analyze coupling of microstrip lines to the rectangular structure.

This coupling may be either a direct connection or a gap coupled connection. Advantages

of the FDTD solution of this problem are that it is a full wave solution which allows for

radiation or surface wave loss and that no empirical values such as "effective" dimensions

are needed for the analysis, also the geometry may be altered easily to allow for various

connections or coupling to the patch. This is a significant improvement over methods

which rely on a planar circuit approach in which the substrate thickness must be small

compared to wavelength and inherently three dimensional coupling problems are not easily

handled. Comparison of our results with various planar circuit approaches will be made.

A new perturbation series, coupled integral equation approach for calculating the

frequency dependent circuit parameters for quasi-TEM transmission lines with lossy con-

ductors is presented. The method considers the addition of loss and dispersion to be

perturbations on the lossless TEM case, and therefore the difference between the propaga-

tion constant and the wavenumber in free space is a small parameter. We obtain the lowest

order term of the perturbation series by solving two quasistatic problems; the electrostatic

problem to get the capacitance, and the magnetoquasistatic problem, with the distribution

of current inside the wire considered, which gives the frequency-dependent inductance and

resistance. Both of these problems are solved using one-dimensional integral equations

for quantities on the surface of the conductor; this represents a significant improvement

in efficiency over previous methods. For most cases of practical interest, the lowest order

term of the series will suffice. If, however, the change in the propagation constant from the
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lossless case, due to the altered inductance and the addition of resistance, is significant,

additional terms in the perturbation series can be calculated.

The method is illustrated with the case of one or more wires embedded in a uniform

dielectric. In the original magnetoquasistatic problem, the current is entirely directed along

the axis of propagation, and satisfies the frequency-domain diffusion equation. Outside the

wire, the magnetic vector potential is in the same direction, and obeys Laplace's equation.

The boundary conditions are the continuity of tangential and normal magnetic field at the

interface, which can be expressed in terms of the current density and vector potential and

their derivatives. Since we can express the ratio of the frequency-dependent resistance to

the DC resistance in terms of the values of the volume current and its normal derivative

on the surface of the wire only, we can use a pair of coupled integral equations to solve for

these quantities alone, which we can solve by Galerkin's method or other finite element

methods.

Results obtained using this technique are shown for some important cases, indud-
ing rectangular wires, and are compared with earlier methods and with experimental data.

Previous methods for calculating the resistance fall into three categories. First, for cer-

tain cases, exact analytical results can be obtained. Secondly, especially in the case of a

rectangular wire, the cross-section can be divided into rectangular segments, each much

smaller than a skin-depth, across which the current is assumed to be constant. Magne-

toquasistatics gives simple answers for the resistance and self-inductance of each element,

and the mutual inductance between elements. This leads to a matrix equation which is

solved for the current distribution. The disadvantages of this technique are that it requires

basis functions throughout the cross-section of the conductor, which is especially intensive

as the frequency gets large. Also, closed form expressions for the matrix elements only

exist when the elements are rectangular - other shapes, such as triangular patches, which

might be used to fit a wire of arbitrary shape, lead to nested numerical integrals.

17



The third method used is a variational procedure. This is similar to the method

presented here, except that the current and the magnetic vector potential are expanded in

functions which span the entire cross-section. This has two drawbacks: first, it requires that

there be a closed outer conductor, which is not physical in many important cases. Second,

as in the previous method, using elements which fill the entire cross-section increases

the computation time unnecessarily, since only the value of the current and its normal

derivative at the surface of the wire are needed to calculate the resistance.

A new method for analyzing frequency-dependent transmission line systems with

nonlinear terminations is presented. The generalized scattering matrix formulation is used

as the foundation for the time domain iteration scheme. Compared to the admittance

matrix approach proposed in a previous paper, it has the advantage of shorter impulse

response which leads to smaller computer memory requirement and faster computation

time. Examples of a microstrip line loaded with nonlinear elements are given to illustrate

the efficiency of this method.

As the speeds of integrated circuits increase, the effect of interconnection lines be-

comes more and more important. Traditional lumped element circuit model must be

supplemented by the transmission line model in order to account for propagation de-

lays, dispersion and losses. This has created needs for new numerical procedures that

can be easily incorporated into current CAD tools. To make matters more complicated,

the interconnection lines are terminated with not only linear resistors but also nonlinear

semiconductor devices, such as diodes and transistors.

Several techniques are now commonly used to deal with nonlinear circuit prob-

lems, for example, the direct time domain approaches, and the semi-frequency-domain ap-

proaches, such as the harmonic balance technique. The semi-frequency-domain approaches

are useful for microwave and millimeter wave integrated circuits but become impractical

for digital integrated circuits because of the latter's wide band nature. On the other hand,

frequency-dependent parameters often make it awkward to apply the direct time domain

approach to the interconnection line systems.
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We propose a hybrid frequency-domain time-domain technique based on the gen-

eralized scattering matrix formulation. For an n line system, we define 2n scattering

parameters according to the frequency-dependent characteristic impedances of individual

lines (Z0j = L jj(w)/Cjj(w)). The time-domain transfer matrix (impulse response) of

this 2n-port system is then obtained by the inverse Fourier Transform. Lastly, the non-

linear equations associated with terminal characteristics are incorporated and solved with

iteration procedures such as the Newton-Ralphson method.

The key to efficient and stable solutions in this problem is shortening the duration

of every transfer matrix element. With the generalized scattering parameters approach, we

are able to achieve that yet eliminating the need for artificial matching networks adopted

by a previous work. Furthermore, the use of individual characteristic impedances in the

definition of scattering parameters enables us to generalize this method to coupled lines

with distinct properties while keeping the duration of transfer matrix elements short. This

cannot be realized if traditional scattering parameters are used. We shall illustrate the

elegance and efficiency of our approach for a dispersive microstrip line with different non-

linear loads and excited with narrow Gaussian pulses. The elements of transfer matrix

are found out to be either zero or single retarded delta-impulse accompanying a small

spike with very narrow spread. Typical computation time for a 1000 time-step iteration

ranges from 4 to 27 seconds on a VAXStation 3500. The effects of line dispersion and load

nonlinearity will be clearly delineated in the presentation.

The transient propagation characteristics of VLSI interconnects with discrete ca-

pacitive loads at various locations is analyzed based on a hybrid transmission lines-lumped

element circuit model. Exact expressions of the Laplace transform of unit step responses

are first obtained through the ABCD matrix formulation. We then apply the equivalent

dominant pole approximation to the transfer function with the propagation delays factored

out. The approximated transfer function can be inverted in dosed form and quickly eval-

uated. These results provide efficient ways of finding approximately the effects on delays

and rise time brought by VLSI off-chip interconnects.

19



Because of the dramatic increase in device densities on microelectronic chips, the

propagation delay for off-chip interconnects has become the limiting factor to the speed

of VLSI packages. Typical scales of these interconnects will be comparable or larger to

the characteristic wavelength of high frequency components of the signal. Therefore, to

calculate the delays caused by these interconnects properly, a hybrid circuit model con-

taining transmission line sections as well as lumped elements must be used in place of

the all-lumped element one. Most circuit simulation packages are nevertheless based on

the latter and have to resort to subsection approximation when dealing with transmission

lines. This scheme will undoubtedly lead to lengthy computation, which is not desirable

when a quick, heuristic estimate of bounds are needed for the initial phase of the design

cycle.

Two approaches have been developed for obtaining the approximate transient re-

sponse without lengthy simulation. The first kind of solution techniques emphasize the

calculation of bounds to voltage responses from the differential equations either by direct

integration or by using the optimal control theory. On the other hand, the second kind of

techniques analyze the properties of Laplace transform domain solution. Thus far, their ap-

plications are limited to all lumped-element and distributed RC networks, which can only

take care of on-chip interconnects. We shall take the second approach by incorporating

transmission line elements for off-chip delay estimation.

Our configuration includes a series of transmission line sections with arbitrary dis-

crete capacitances and resistances loaded at junctions. The ABCD matrix formulation is

used to obtain the Laplace transform of the unit step response. We express the latter in the

form of exp(-sT)/Q(a), where Q(s) = A 0 (a) + AI(a) exp(a 1"l) + A2 (9) exp(.9" 2 ) + ... with

all {Ai(s)} being rational functions in a. The factor {exp(-aT)} is identified with direct

transmission delay over the total length of the line. For the rest part (1/Q(s)), we proceed

to apply the equivalent dominant pole approximation technique[7]. Either a single negative

real pole or second-order complex conjugate pair will be chosen for approximation depend-

ing upon the property of lumped loads at junctions as well as the source impedances. A

phase-correction factor exp(-sTm) is introduced to make up for the discrepancies caused

by our low-order approximation. The first-order and second order approximations enable

us to obtain closed-form solution to the transient response. Comparison of the approxi-

mated responses with those obtained from brute-force numerical Laplace inversion shows
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very good match when the propagation delay of an average transmission line section is

less than half the product of junction load capacitance and transmission line characteristic

impedance. Yet we only have to spend a fraction of the time for computations. The accu-

racy of this method will be discussed in detail with some examples of lossless transmission

line networks in which lumped capacitors are loaded at regular intervals.

The propagation properties of single and coupled inhomogeneous slab waveguides

are analyzed. An integral equation formulation using the dyadic Green's function which

covers both the TE and TM modes is proposed. The dispersion relations are obtained by

applying the Galerkin's method to solve the integral equation. The coupling between two

symmetrical inhomogeneous slab waveguides is also investigated. This method is shown

to be applicable to arbitrary dielectric constant profiles.

The guidance and leakage properties of single and coupled dielectric strip waveg-

uides are analyzed using the dyadic Green's function and integral equation formulation.

Galerkin's method is used to solve the integral equation for the dispersion relation. The

effects of the geometrical and the electrical parameters on the dispersion relation are inves-

tigated. A method to predict the occurrence of leakage is proposed. The properties of the

even and the odd leaky modes are also investigated. Results are compared with previous

analysis and shown to be in good agreement.

A spectral domain dyadic Green's function for multilayered uniaxially anisotropic

media containing three-dimensional sources is derived. Tractable forms are shown to be

easily deduced from the physical picture of the waves radiated by the primary sources

and the multiple reflections from the stratified medium. The formulation decomposes

the dyadic Green's function into TE and TM waves. The dyadic Green's function in the

source region is properly represented by extracting the delta function singularity. A simple

proceedure to obtain the fields in any arbitrary layer is described. Recursion relations for

appropriately defined reflection and transmission coefficients are presented. Forms suitable

for transmission line applications in multilayered media are derived.
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Full modal analysis is used to study the dispersion characteristics of microstrip

lines periodically loaded with crossing strips in a stratified uniaxially anisotropic medium.

Dyadic Green's functions in the spectral domain for the multilayered medium in conjunc-

tion with the vector Fourier transform (VFT) are used to formulate a coupled set of vector

integral equations for the current distribution on the signal line and the crossing strips.

Galerkin's procedure is applied to derive the eigenvalue equation for the propagation con-

stant. The effect of anisotropy for both open and shielded structures on the stopband

properties is investigated.

A direct three dimensional finite difference time domain (FDTD) method is applied

to the full-wave analysis of various microstrip structures. The method is shown to be an

efficient tool for modelling complicated microstrip circuit components as well as microstrip

antennas. From the time domain results, the input impedance of a line-fed rectangular

patch antenna and the frequency dependent scattering parameters of a low pass filter and

a branch line coupler are calculated. These circuits are fabricated and the measurements

are compared with the FDTD results and shown to be in good agreement.

A rigorous dyadic Green's function formulation in the spectral domain is used to

study the dispersion characteristics of signal strip lines in the presence of metallic crossing

strips. A set of coupled vector integral equations for the current distribution on the

conductors is derived. Galerkin's method is then applied to derive the matrix eigenvalue

equation for the propagation constant. The dispersion properties of the signal lines are

studied for both cases of finite and infinite length crossing strips. The effects of the

structure dimensions on the passband and stopband characteristics are investigated. For

crossing strips of finite length, the stopband is mainly affected by the period, the crossing

strip length, and the separation between the signal and the crossing strips. For crossing

strips of infinite length carrying travelling waves, attenuation along the signal line exists

over the whole frequency range of operation.
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Abstract

A macroscopic model is proposed to explain nonlinear electromagnetic phenomena in su-

perconductors. Nonlinear constitutive relations for electromagnetic problems are derived

by modifying the linear London's equations. Tae superelectron number density ns is a

function of the applied current density J. The critical current density Jc is derived clas-

sically from a critical energy Ec. For temperature 2 0 0, the concept of critical current

Jc does not imply an abrupt transition of the whole sample from a superconducting state

to a normal state when J > Jc. A rather smooth variation of ns(J) is shown instead.

The relation, ns(J), is derived from the Maxwellian distribution of electron velocities at

a certain temperature T and a certain macroscopic current density J. Agreement has

also been found between this ns(J, T) model and the temperature dependence of ns in

the two-fluid model. The nonlinear conductivities ors(J) and on(J) are obtained from the

London's equation and the ns(J) function. Nonlinear resistance R(I), kinetic inductance

Lk(I) and surface impedance Zs(I) in thin wire, slab, and strip geometries of supercon-
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ductors are calculated. A general scheme of solving nonlinear electromagnetic problems in

superconductors is proposed. A good agreement between the theory and experiments has

been found.
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L Introduction

Superconductors have great potential applications in many fields. For example, in mi-

crowave integrated circuits, high-Q resonators and microstrips can be made of supercon-

ductors for lower losses. The discovery of high-Tc superconductors has also made a big

impact on superconductor modeling. The problem of modeling nonlinear electromagnetic

properties of a superconductor is of practical importance. For example, in application

of superconductors to high-Q resonators, fields and currents are very large at resonance.

Nonlinear effects are inevitable.

In this paper, we use the macroscopic (classical) theory to model the nonlinear supercon-

ductivity. The constitutive relations which relate electric field 1 and magnetic field N

to superconducting current density 7 s will be derived. The theory is based on the two

London equations and the two-fluid model. The new problem at hand is to incorporate the

nonlinear effects into the constitutive relations. Application of the constitutive relations

will provide new methods for studying nonlinear effects in superconductors.

There are different types of nonlinearity in superconductors. One type of nonlinearity is

displayed in polycrystalline superconductors where granular currents are involved [1,2].

The granular nonlinearity occurs when the current I is above Ic (here Ic is the threshold

current of the grain junctions). It is similar to a p-n junction's exponential I-V relation.

It is also found in type II superconductors that the vortex motion in the mixing state

(between the superconducting and the normal states) can cause a nonlinear V - I relation

when current density J is slightly greater than a critical current density Jc [3, p.331] [4,

p.373]. The granular or vortex nonlinearity will not be discussed further in this paper.

Another type of nonlinearity is intrinsic for all superconductors. This is due to the de-

3



pendence of the superelectran number density ns on the applied current density J. This

nonlinearity is more general. There have been few papers in literature directly addressing

this nonlinearity problem. In this paper we will focus on this intrinsic nonlinearity.

The purpose of this paper is to provide engineers a material-independent macroscopic

model for nonlinearities in superconductors. The model will be based on macroscopic

parameters. The model is intended to achieve the following: 1] to explain the nonlinear

voltage-current (V - I) relations and the dependence of inductances on currents (L - I

relations). This requires the derivation of a complex conductivity &(J) model; 2] to explain

the concept of critical current Jc with no abrupt transition in the sample's V - I curve

when J exceeds Jc; 3] to obtain the temperature dependence of ns(T) which agrees with

what is assumed in the two-fluid model; 4] to derive a general scheme which can solve the

nonlinear problem including the effects of geometry.

II. Critical Energy for a Single Electron, Ec(T)

The starting point of this model assumes that there is a critical value of energy, Ec, which

separates the superconducting and normal states of a single electron. When an electron

has an energy E < Ec, it is in the superconducting state, it is paired with another electron;

when E > Ec, it is in the normal state. This critical value Ec is a function of temperature

T. The higher T is, the lower Ec becomes. At T = Tc, the critical temperature, Ec = 0.

This critical energy Ec reminds us the gap parameter A in the BCS microscopic theory. It

may correspond to the de-pairing energy of a Cooper pair. But here the critical energy Ec

is proposed as merely an assumption without justification. The origin of this Ec should

be studied in microscopic theory. We will leave this problem and use Ec as a starting

assumption.
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We assume the temperature dependence of Ec as

Ec(T) = 3.52kBTc(l - T_)a for 0 <T < Tc (1)

where iB is the Boltzmann constant, Tc is the critical temperature, and a is a free pa-

rameter which may depend on the type of material. a > 0 is required.

For each electron, the energy consists of kinetic energy and potential energy,

1 2
E E=ck +BEp = -mv + (2)

2

where m is the mass of an electron and v is its velocity. In quantum theory, v is the

expectation value < 01,610 >, where 0 is the wavefunction of the electron and - is the

velocity operator. The electron energy E can be expressed as a function of temperature

T, applied current density J, magnetic field H, and field frequency f.

E = E(T,J, f,H) (3)

Ec is the origin for critical values of Tc, Jc, fc and Hc. It is useful to determine the

relations of these critical values to Ec.

MI. Velocity Distribution for a Group of Electrons

First let's consider that the electrons have one-dimensional velocities, for example, in a

thin (radius a << A the penetration depth) wire within which the current flows in only one

direction. The electrons in the sample have different velocities due to thermal motion. The

average velocity of all electrons is nonzero along the current direction. The current density

J is a macroscopic quantity. At a certain point F, J is related to the average velocity of

the electrons ir. a small volume AV,

v (4)

AV
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where N is the number of electrons in AV and q is the charge of an electron. Note that

not every electron has the same velocity. The velocities vi of the electrons obey a certain

distribution. Here, for a particular example, we assume that the number of electrons,

6N, which have the velocities between v and 6v obeys the one-dimensional Maxwellian

distribution. If we define

"n(v) - 6N (5)
.SvAV'

then [10, p.80] [11, p.70]

n(v) = _t ( A)22kBT

where vA is the average velocity of the electrons, m is the mass of an electron, and nt

is a constant. The distribution is Gaussian. Figure 1 shows the n(v) function. n(v) is

assumed to be a continuous distribution. The state of an electron will be determined from

the velocity (energy) in this distribution n(v).

The constant nt can be determined from the normalization condition,

J (v)dv = no (7)

where n0 is the total number density of electrons known at AV. It can be easily shown

that

t = no. (8)

We can relate the two macroscopic quantities, J and VA. It can be shown that

J f J qr&(v)vdv = qnOvA (9)

at AV.

The T dependence of n(v) shows that at T = 0,

n(v) = n06(v), (10)
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a $ function [12, p.16]. When T becomes larger, the width I/2kBT/m of the distribution

is wider.

IV. nj(J) and Critical Current Density Jc(T)

Since the electrons have different velocities, therefore different energies at a certain applied

current density J, the electrons will not all exceed the critical energy Ec at the same time.

There is no macroscopic critical value Jc of the current density such that when J > Jc,

number density of superelectrons nj = 0. Only when T = 0 and n(v) becomes n 06(v),

nj(J) shows an abrupt drop to zero at a critical Jc(T = 0): for J < Jc(0), ns = no; and for

J > Jc(0), nj = 0. In experiments, since absolute T = OK is not achievable, a completely

sharp transition of ns is not observed.

We can define a Jc(T) which corresponds to the average velocity vA and Ec. First, let's

define a critical velocity vc for a single electron corresponding to Ec. If the potential energy

is included in the case of maximum kinetic energy, rmv2 = Ec. Hence,

VC = •V_. (11)

Since J = no qvg, we define

Jc(T) = qnovc = qno 2EB(T) (12)
/ L/7.0 4B T•,

Jc(T) = qn0  .lTc(1 - .)a/2 (13)

as the critical current density. This Jc is different from the Ginzburg-Landau's de-pairing

current density. Here Jc(T) is a quantity derived from the hypothetical critical energy Ec

via the classical kinetic energy expression. The concept of this critical current density Jc

is also different.

7



At T : 0, ns(J) is a smoothly varying function. The Jr(T) has a different characteristics

from Jc(T = 0). When J > Jr(T), nj does not go to zero. This smooth varying feature of

the I - V curve has been widely observed in experiments [5,6].

Since vA = J/qn0 , the number density of superelectrons (here we count the single electron

density rather than the pair density) ns(J) can be derived from the Maxwellian distribu-

tion. The superelectrons are those whose energy are lower than Ec.

,a(J Jv c(J) -m(v-j/qno) 2/2kBTdv (14)

In general, this integral can only be evaluated numerically. A special case is at T = 0,

n(v) = no6(v - VA). Hence, ns,(J) = no if vA < v" or J < Jc(O); ns(J) = 0 if vA > v" or

S> JC(O).

It is illustrated in Fig. 2 that when vA + /2kBT/m < Vc, almost all electrons are

superelectrons, hence nj • no; when VA - V/2- BTrmr > "c, almost all electrons are

normal electrons, hence ns :t 0. At T = Te, ye = 0, hence ns = 0 for all JPs. ns(J)

is plotted in Fig. 3 for four different temperatures. Here J is normalized with the JC at

T = 0. At T = 0, ns = n0 for J < Jc(0). This is what has been predicted by the two-fluid

model.

The dependence of ns on J has also been studied in the Ginzburg-Landau (GL) theory

(4,71. Figure 4 shows the nj(J)/ns(J = 0) function derived from the GL theory [41 with

comparison to our model. In our model, ns decreases smoothly to zero. The GL theory

predicts that there is a critical Jc at all temperatures. When J > Jc(T), ns = 0, or ns

becomes an imaginary value. This ns(J) function was derived from minimizing the Gibbs

free energy gs. When minimizing gs with respect to the order parameter 0b (n, = j60*),

only a first few terms were taken in expanding gs in terms of power series of j&.

8



The GL theory is similar to the macroscopic quantum model (MQM) [4] for homogeneous

samples. In the theory, all electrons are described by a single macroscopic wavefunction

T. Therefore all electrons have the same velocity, same as vA. The distribution n(v) is

taken as n0 6(v - VA). Hence it predicts an abrupt drop of nj to zero when J > Jc(T) for

all temperature T's. This is not what has been observed in experiments. Smooth variation

of ns(J) is found for all J values. If the wavefunction of each electron 0i is taken into

account for a distribution n(vi), where vi -=< Oibi-0kbi >, a modified formula can be derived

from statistical physics.

The original GL theory is for T close to Tc. The temperature dependence of nj assumed

in the two-fluid model is that

ns(T) = n0[1 - (T_)4]. (15)

The ns(T) function is compared with our distribution model in Fig. 5. From eq. (14), for

a fixed J, the ns(T) curve matches the two-fluid model for a = 3/2.

V. Conductivities os(J) and On(J)

To derive the constitutive relations of superconductors for electromagnetic fields, we will

use the London's equations. The London's equations are derived from the fundamental

Newtonian dynamics and the Meissner effect [4]. They can also be derived from quantum

mechanics by introducing a canonical momentum [3,8]. If we do not consider the Lorentz

force due to the magnetic field, the linear London's equations are valid [4] from the Drude

model and the Newton's second law.

(16)Ot A

V × 7s B (17)

9



where B and B are the total electric and magnetic fields respectively, Js is the current

density due to superelectrons, and A = ms/qins. The subscript s denotes that the quantity

is of superelectrons. The nonlinearity will be included in A(J) = jI0 A2 , and

qn(J) i sJ)n (18)

Once ns(J) is known, A(J) can be derived. Hence, the nonlinear constitutive relations are

obtained. Nonlinear effects come in A and ns.

Substituting eq. (14) of ns(J) in A, we derive the A(J) function, which is plotted in Fig.

6. The penetration depth goes to infinity when J >> Jc(T). Conductivities or(J) and

orn(J) are derived from the London equations for time-harmonic (e-it) fields

*2
as --- n- (19)

and
q2 .

an m(-iT (20)

where

ns(J_ V vd e(T) no -mv-J/qno2 /2kBTd
ns(J) = -,,), od

VC -vc(T) 2rkBT

and the number density of normal electrons nn(J) =no - ns(J) from conservation of

charge. The above equations are the key results of this paper. The conductivities are

plotted in Fig. 7a and 7b, where i- is the transport time or the mean scattering time of

normal electrons. cra(J) and cn(J) reflect the current dependence of ns and nn respectively.

These plots are for T = 88K very close to the critical temperature Tc = 90 K. The nonlinear

behavior is easy to see. Total conductivity is a complex number

&(J) = arn(J) + 0 0(J) (21)

VI. Geometry Effect in Nonlinear Relations

10



1. Thin wire

For a thin wire superconductor with radius a << , the current density J can be assumed

independent of the radius p. The thin wire is an ideal case since a << A is not practical.

Usually r ; 10-12 sec, and w < 109 Hz, hence wr << 1 which is the quasi-static case.

7n :t q2nnr Here we can not assume osI >> IornI since we are studying the transition

where nj may become very small.

Resistance per unit length of the wire can be written as

R = 10n (22
[14,1 2 + lursI 2]fra 2  (22)

The kinetic inductance Lk per unit length of the wire can be written as
sl-,

Lk = [ lpsn2 + 1sIZIwwa 2  (23)

In this case, the internal and external inductances, Lin and Lez, related to the energy

stored in the magnetic 'e1, are independent of I, therefore are linear. Figure 8 show the

calculated R - I and Lk - I curves from eqs. (22) and (23), where WT = 10-3, I = J7ra 2 .

The R - J curve appears very nonlinear because T = 88K is very dose to Tc = 90K. One

interesting behavior in the Lk - J curve is that a maximum Ls appears near Jc. This can

be explained from eq. (23). At J << Jc(T), ns >> nnw', hence Lk "• 1/ns is small. At

J >> Jc(T), nnwr >> ns, hence, Lk -- nf/(nn) 2 is also small. When nnWr and ns are

comparable, a maximum of Lk may be achieved.

A special case is that at DC where w = 0. From eq. (19), rs --+ oo. From the first London

equation, A = 0. When J >> Jc, ns --+ 0, then it is possible for T # 0. If Js has

a small time fluctuation, then is not exactly zero, the above quasi-static discussion can

be applied.

2. Slab

11



The above discussion has not taken into account the geometry of the superconductor.

For finite dimension superconductors, for example, a slab in Fig. 9, the non-uniform

distribution of current density Jy(z) will cause the nonlinearity occur earlier in the R - I

and Lk-I curves. The internal and external inductances Lin and Lez will also be nonlinear

since Jy(z) is determined by I,

I=1 JJ~ycs = Jdf dzJy(x) f Jdz fdz&(x)E(x) (24)

where E(z) is the electric field. For a uniform current density, Jy(z) = JA, JA = I/Azd

where d is the thickness of the slab. For non-uniform Jy(z), at the edge of the slab, Jy

is bigger than JA, ns(J) is smaller at the edge. Therefore, for the same magnitude of I,

inhomogeneous Jy(z) will exceed Jc at some z's even when JA is less than Jc.

If a three-dimensional velocity distribution is considered for a current flow in the y direc-

tion,

n(vz, vy,z) = n(2..kBT)e - -A+(" )2+V2]/2kBT (25)

•= qnovA and

IimT..,On(V) = no6 (vz)6(vy - vA)S(vz) (26)

tV 2 ./2 . .2 ..2

ns(Jy) dv c! dvz-J c Y-z n(F)dvz (27)

with vA = Jy/lqnO-

Under the quasi-static condition wT << 1, if a current I is applied along y direction in

the slab, a magnetic field Hz(z) will result from the applied current Jy(z). Note that in

the finite-width slab of a linear superconductor, even at w = 0, current J31(x) has a non-

uniform distribution, due to the penetration depth A. From the second London equation

12



(17) and V x A= B, V x H = J, under the London gauge, V- A = 0 and

S= -AJs, (28)

V2 [JsA2(J)] = Js + Jn = J (29)

where A is the vector potential. In general, this equation can not be solved in a dosed-form.

Let's first consider the solution of a linear superconductor for ns >> nnwTr.

Jo = I cosh(z/A) for Il_ d/2 (30)
2A.sinh(d/2A)

and
Hz() = -I sinh(C/A)

2sinh(d/2A) for I1_<d/2. (31)

An iterative scheme is to use the linear solution Jy(z) in eq. (30) to calculate ns(J) in

eq. (14) and A(z) in eq. (18). Then A in eq. (30) is substituted by the obtained A(z)

to calculate Jy(z). Then eq. (14) is used to caiullate ns[J-y(x)] again. This procedure is

repeated until Jy(m) converges. Figure 10 shows the results of J(x) and ors(z) obtained

from the iterative method.

The impedance of the slab is defined as

1

z = d/2 d(32)
J-d/2 dx&()

and resistance R = Re(Z) and Lk = -Im(Z)/w. Figure 11 shows the R - I, Lk - I

relations from final convergent Jy(z).

For different thicknesses d, the nonlinear curves are different. We have found that for

smaller d/A, R - I and Lk - I relations are more nonlinear. This is understandable since

Jy is bigger for smaller d at a given applied current I.

13



Surface impedance of a superconductor is defined as

Zs5= J (33)

where

S= e + (34)

Surface resistarre is Rs = Re(Z,), and surface inductance is Ls = -Im(Zs)/w-. For

wTr = 10-3, Rs and Ls are plotted in Fig. 12. The nonlinear region appears near Jc

where the sample is partially superconducting. In the normal or superconducting states,

the relations are linear. The L,3 is different at normal region and superconducting region.

Experimental results [13] are also compared in Fig. 12c. As it shows, this model agrees

with the trend of the experimental results. Since some parameters (a,, Ir, etc.) are material

dependent, by adjusting these parameters, a better fit between the theory and measure-

ments may be found. Surface impedance Zs is a good description of superconductors since

most of the current and field are confined within the penetration depth A from the surface.

Another case is at very high frequencies and an for T > Tc is not very big (which is true

for the ceramic high Tc superconductors) so that e can not be neglected in eq. (34) for 4y
near Jc. Since & 3 0 in the Maxwell's equations, a wave equation has to be considered.

We will solve the guided wave case where the electric field Ey is decaying away outside the

slab.

The wave equation for E is

V2E + k20E = 0 (35)

where

r =1 + - (36)
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If we replace E by &JJy in eq. (35), eq. (35) will look very similar to eq. (29). We can also

use an iterative scheme to solve for the nonlinear & case. First we assume o is independent

of J, solve for Jy(x). Second we calculate a(x) = o'[Jy(x)]. Third we solve the wave

equation for the inhomogeneous medium problem, get Jy(x). These steps will be repeated

until Jy(z) and &(z) converge. This is a feed-back process, at the edge, Jy increases will

cause ns decreases, hence ars decreases, hence Jy decreases, until stabilized.

This procedure is similar to solving the coupled two differential equations in the GL theory.

Where the equation for Ais essentially the same as the wave equation (35) for E or .7y. The

difference is the second equation for 0b, where 0(;A) (ns(J) ) will be derived. We derived

ns(J) from the Maxwellian distribution, while the GL theory derived from minimizing

Gibbs free energy at equilibrium. A macroscopic wave function (order parameter) is used

to describe all electrons in the GL theory, hence the distribution of velocity diversity is

neglected.

3. Thin film strip

The slab geometry results can be used to study a microstrip geometry. If the dimension

of z in Fig.9 is squeezed to d << X, the current will still be uniform in the z direction.

Therefore the same results can be applied.

This nonlinear study can also be applied to the magnetic field H dependence of R and L.

Once the relation between the magnetic field H and the current J is determined, He and

Jc are related. The above discussion can be directly applied.

Although the model is classical, the corresponding quantum statistical distribution can be

used to derive the velocity (energy) distribution. Discrete distribution may be needed if

the energy is quantized.
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VII. Conclusion

A macroscopic model is established for nonlinear constitutive relations in superconductors.

Maxwellian distribution of electron velocities is used to derive the dependence of superelec-

tron density ns on applied current density J. Complex &(J) is obtained. The geometry of

a superconductor will introduce non-uniform distribution of the current density J. There-

fore nonlinearity will be enhanced at the surface of the device. By using this macroscopic

model, a general scheme of solving for electromagnetic properties of superconductors has

been proposed.

Acknowledgement

This work was supported in part by the US Office of Naval Research under contracts

N00014-89-J-1019 and N00014-90-J-1002.

References

[1] P. England, et al., "Granular superconductivity in R1 Ba2Cu 3 0 7 _6 thin films", Phy.

Rev. B, Vol.38, No.10, pp. 7125-7128, Oct. 1988.

[21 M.A. Dubson, et al., "Non-Ohmic regime in the superconducting transition of Poly-

crystalline YIBa 2 Cu30z", Phy. Rev. Lett., vol.60, No.11, pp.1061-1 064, Mar. 1988.

[3] T. Van Duzer and C.W. Turner,"Principles of Superconductive Devices and Circuits",

New York: Elsevier, 1981.

[41 T.P. Orlando and K.A. Delin, "Foundations of Applied Superconductivity", Addison-

Wesley Publishing Company, 1991.

16



[5] D.H. Kim, et al., "Possible origins of resistive tails and critical currents in high-

temperature superconductors," Phys. Rev. B., vol. 42, No. 10, pp.6249-62 58, 1990.

[6] X. Yu and M. Sayer, "Temperature dependence of critical currents in YBaCuO ceram-

ics," Phys. Rev. B., vol.44, No.5, 1991-I

[7] L. N. Shehata, "The wall energy and the critical current of an anisotropic high-

temperature superconductor using modified Ginzburg-Landau Theory," J. Low Tempera-

ture Phys., vol.78, No.1/2, 1990.

[8] M. Tinkham, "Introduction to Superconductivity," McGraw-Hill Book Inc., 1975.

[9] K.K. Mei and G.C. Liang, "Electromagnetics of superconductors", IEEE Trans. MTT,

vol.39, No.9, Sept., 1991.

[10] L.D. Landau and E.M. Lifshitz, "Statii;cal Physics", Addison-Wesley, 1969.

[11] G.H. Wannier, "Statistical Physics", John Wiley & Sons, 1966.

[12] C.M. Bender and S.A. Orszag, "Advanced Mathematical Methods for Scientists and

Engineers," McGraw-Hill Book Com., 1978.

[13] Y. Kobayashi, T. Imai and H. Kayano, "Microwave measurements of temperature and

current dependences of surface impedance for high-Tc superconductors," IEEE Trans. on

Microwave Theory and Techniques, vol. 39, No.9, pp.1530-1538, Sept. 1991.

17



Figure Captions

Fig. 1. Maxwellian distribution of electron velocities.

Fig. 2. n(t) functions for different average velocity IA's.

Fig. 3. n.(J)/no at different temperatures. In this example, a = 3/2, and T- 90K.

J,(O) is from eq. (13).

Fig. 4. Comparison between the GL theory and this model for no(J)/no(J 0) at

T = 88K. Here a = 3/2, T, = 90K.

Fig. 5. Comparison between the two-fluid model and this model for no(T)/no at

J = 0. Here T = 90k.

Fig. 6. Penetration depth A as a function of current density J at T = 88K. Here

a = 3/2, T, = 90K.

Fig. 7. (a) super-conductivity e, as a function of J at T = 88K. Here a = 3/2,

T, = 90K. (b) normal conductivity a. as a function of J at T = 88K. Here a = 3/2,

T, = 9oK.

Fig. 8. (a) Resistance of a thin wire R as a function of J at T = 88K. Here a = 3/2,

T, = 90K. (b) Kinetic inductance Lk of a thin wire as a function of 3 at T = 8oK.

Here a = 3/2, TZ - 90K.

Fig. 9. A superconducting slab with a thickness d.

Fig. 10. (a) Current density 4y(z) distribution in a slab. (b) super-conductivity 0o,()

distribution in a slab. These are for T = 80K and a = 3/2, T. = 90K, d/A(J = 0) = 2.

Fig. 11. For d/A(J = 0) = 0.5,1,2, (a) resistance of a slab, R, as a function of applied

current intensity I at T = 80K; (b) kinetic inductance LI of a slab as a function of



applied current intensity I at T = 80K. Here a = 3/2, T,' = 90K.

Fig. 12. (a) Surface resistance R, as a function of J at T = 88K and (b) surface

inductance L, as a function of J at T = 88K, Here a = 3/2, T, = 90K. (c) R, as a

function of surface current density K at T = 77k. The circles are the measured data

from reference [141, The sample is a YBCO at f = o0.4GHz with TZ = 92K. The solid

curve is the prediction from this model, where a = 3/2, and wr - 2.8X10- 2. The

surface current density is calculated from J with a thickness of A(J).
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ELECTROMAGNETIC PROFILE RECONSTRUCTION

USING THE RICCATI EQUATION APPROACH
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+ Permanent address: Center for Advanced Space Sensing
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The Riccati differential equation for reflection coefficients in one-dimensional
inhomogeneous media is applied to the electromagnetic inverse scattering prob-
lem. Two types of the Riccati equation in literature, Schelkunoff's and Red-

heifer's, are derived and distinguished. Based on inverting Rediheffer's Riccati
equation, both linear and non-linear inversion formulae are proposed. These

renormalized perturbation formulae reconstruct the dielectric profile from the re-

flection coefficient at the surface of the medium. Existing inversion formulae (in-
cluding the Born approximation) which were obtained from the Green's function

approach and the Gel'fand-Levitan-Marchenko (GLM) theory are now derived

from the Riccati equation. Four inversion schemes based on inverting the Riccati
equation, linearized Redheffer's Riccati equation, linearized Schelkunoff's Riccati
equation, non-linear Redheffer's Riccati equation and non-linear Schelkunoff's

Riccati equation approaches, are used to invert several dielectric profiles. Com-

parison and summary of these methods are given. All these methods give higher
order inversion results than the first-order Born approximation. The inversion is

performed on band-limited reflection coefficients in frequency domain. An inverse

Liouville transform is introduced to rigorously recover the geometric lengths from
the stretched coordinates in the inversion procedure.
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Inverting the physical parameters which usually appear as inhomogeneous pro-
files from measurements has been a challenging task for the remote sensing com-
munity. Due to complexity of the media, the forward problem in remote sensing
of forest, vegetation and sea ice, typically in random media, has attracted re-
searchers' efforts in the past two decades. Techniques which serve the ultimate
goal of solving the inverse problem have also evolved and entered into a practical

stage.

In general, the inverse methods can be summarized in three categories. The
first one is a data base approach. Whenever a measurement result comes in,
it will be compared with all the pre-stored patterns in a library to identify the
possible targets. In industry, it is called data interpretation which strongly relies
on previous experience. The accumulation of data in the library is a learning
process. The advantage of this method is that the unknowns can be identified
exactly if such target has been seen before so that the cause and the result are
directly connected. The disadvantage is that if the data base is not big enough,
the target can not be identified, or if the data base is too big, it will take too much
time to search for and match the right pattern.
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The second method is the iterative approach. A forward model of deducing re-
sults from causes has been established before the inversion. When a measurement
is obtained, a set of guessed values for the unknowns will be put in the froward
model as the possible causes. If the predicted result of the forward model does
not match the measurement, an adjusted set of parameters will be used as a new
guess. The whole procedure will be repeated until the match is found. During
iterations, how to correct the error to reach fastest the convergent value is very
important. This procedure is also called optimization or error minimization, which

by itself is an active research area. Iterative methods are particularly useful when
the solution of an integral equation can not be found in an explicit form. As an ex-

ample of the iterative methods, the Born approximation approximates the forward
model in a linearized form, then iterates towards convergence. The advantage of
the iterative approach is that an accurate final solution can be found at a relative
fast (compare to data base search) speed. The method is also flexible for different
kinds of targets, unlike the data base search where the target has to have been

seen before. The disadvantage is that the convergence of iteration is not always
guaranteed. There are usually more than one minimum of the cost function. The
initial guess is sometimes so critical to assure the right convergent result that a

priori information needs to be used. Non-uniqueness is a serious problem in all

inversion methods. Sufficient number of measurements are helpful of reducing the

degree of non-uniqueness. Formulation of the forward model for the final inversion
equation determines how efficient the inversion scheme is, which sometimes also
affect the degree of non-uniqueness.

A recently developed inversion method referred to as the renormalized Source-
Type Integral Equation (STIE) approach [1] solves the integral equation derived
from the Green's function [2] without the linear approximation. The STIE ap-

proach formulates an exact forward model, hence is not restricted to low contrast
profiles or weak scattering. The STIE method has been applied to profile inver-

sion problems of the soil moisture [3] and oil formation in boreholes [41, where the
medium properties are described by the permittivity and conductivity distribu-

tions. The unknown profiles are inverted from the electromagnetic measurements

at remote observation points.

The third category of inverse methods is the explicit solution approach. When

one solves the inversion equation, dosed-form solutions may be obtained if the

problem is formulated in certain ways and the data is in certain forms. Examples of

this method include the Gel'fand-Levitan-Marchenko (GLM) theory when rational

reflection coefficient is used and methods of inverting the Riccati equation [5].
The advantage is obviously that the convergence is guaranteed and the speed is

excellent. Unfortunately, only a very few practical problems can be solved by
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using this method. It is usually used as a check for other inversion methods or for
mathematical studies.

In this paper, we will review the above inverse methods with our focus on
iterative methods, especially the STIE approach. The STIE approach is extended
to the case of a general background medium. The formulation of the inversion
equation is exact. Numerical optimization methods are employed in the solution
of the inversion equation. The inversion equation also has an explicit dependence
on the unknowns to be inverted for; this allows one to compute the derivatives
(including higher orders) of the response with respect to these unknowns in a closed
form. Therefore, higher-order convergence can be achieved without increasing
much of the computational time. By pre-storing the elements of the inversion
equation (which depend only on the background medium and are independent of
the unknown profile), the method does not require the solution to the full forward
problem repeatedly as in the case of the Distorted Born approach and is therefore
faster in implementation. An algorithm is formulated for simultaneously inverting
the unknown permittivity and conductivity profiles. As an example, a soil moisture
profile is inverted from measurements above the ground.
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